What's RADB and how does it work?

o Asimple Relational Algebra (RA) interpreter written in

Python 3
e Itimplements RA queries by translating them into SQL and executing

them on the underlying database system through SQLAlchemy.

http://sqlite.org/

Basic Usage

RADB Language Usage -- Selection

Selection: \select_{condition} input_relation

For example, to select Drinker tuples with name Amy or Ben, we can write:
\select_{name='Amy' or name='Ben'} Drinker;

String literals should be enclosed in single quotes. Comparison operators <=, <, =, >,
>=, and <> (inequality) work as expected on strings, numbers, and dates. For string
match you can use the like operator; e.g.:

\select_{name like 'A%'} Drinker;

finds all drinkers whose name start with “A”, where % is a wildcard character that
matches any number of characters. Finally, you can use boolean connectives and,
or, and not to construct more complex conditions. More features are available; see
Data Types and Operators for details.

TABLE SCHEMAS

drinker(name, address)
bar(name, address)
beer(name, brewer)
frequents(drinker, bar,
times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Projection

Projection: \project_{attr_list} input_relation

Here, attr_list is a comma-separated list of expressions that specifies the output at-
tributes. For example, to find out what beers are served by Talk of the Town (but
without the price information), you can write:

\project_{bar, beer} \select_{bar='Talk of the Town'} Serves;

You can also use an expression to compute the value of an output attribute; e.g.:
\project_{bar, 'Special Edition '||beer, price+l} Serves;

Note that | | concatenates two strings.

TABLE SCHEMAS

drinker(name, address)
bar(name, address)
beer(name, brewer)
frequents(drinker, bar,
times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Theta-Join

Theta-Join: input_relation_1\join_{cond} input_relation_2

TABLE SCHEMAS

F.or example, to join Prinker(name, c.zddres.s) and Frequents(drink.er, bar, o drinker (name’ ad dress)
times_a_week) relations together using drinker name, you can write: SEE—

e bar(name, address)

Drinker \join_{name=drinker} Frequents; e beer(name, brewer)

e frequents(drinker, bar,
Syntax for cond is similar to the case of \select. times_a_week)
You can prefix references to attributes with names of the relations that they belong e likes(drinker, beer)

to, which is sometimes useful to avoid confusion (see Relation Schema and At- e serves(bar, beer, price)
tribute References for more details):

Drinker \join_{Drinker.name=Frequents.drinker} Frequents;

RADB Language Usage -- Natural Join

Natural join: input_relation_1 \join input_relation_2 TABLE SCHEMAS
e drinker(name, address)
For example, to join Drinker(name, address) and Frequents(drinker, bar, e bar(name, address)
nmgs_a_week) relations togethe.r using drinker name, we can write D rin ke r e beer(name, brewer)
\join \rename_{name, bar, times_a_week} Frequents;. Natural join will auto- -
e frequents(drinker, bar,

matically equate all pairs of identically named attributes from its inputs (in this
case, name), and output only one attribute per pair. Here we use \ rename to create
two name attributes for the natural join; see notes on \ rename below for more
details.

times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Cross Product

Cross product: input_relation_1 \cross input_relation_2

TABLE SCHEMAS
For example, to compute the cross product of Drinker and Frequents, you can e drinker(name, address)
Write: e bar(name, address)
Drinker \cross Frequents;. e beer(name, t_)rewer)
e frequents(drinker, bar,

In fact, the following two queries are equivalent: times_a_week)
e likes(drinker, beer)
\select_{Drinker.name=Frequents.drinker} e serves(bar, beer, price)

(Drinker \cross Frequents);

Drinker \join_{Drinker.name=Frequents.drinker} Frequents;

RADB Language Usage -- Set Operations

Set union, difference, and intersection:

TABLE SCHEMAS
input_relation_1 \union input_relation_2 e drinker(name, address)
input_relation_1\diff input_relation_2 e bar(name, address)

e beer(name, brewer)
input_relation_1\intersect input_relation_2 e frequents(drinker, bar,

For a trivial example, the set union, difference, and intersection between Drinker
and itself, should return the contents of Drinker itself, an empty relation, and again .
the contents of Drinker itself, respectively.

times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

RADB Language Usage -- Rename

Rename:
\rename_{new_attr_names} input_relation

This form of the rename operator renames the attributes of its input relation to those in
new_attr_names, a comma-separated list of names.

\rename {new_rel_name: *} input_relation

This form of the rename operator gives a new relation name to its input relation (the
attribute names remain the same). For example:

\rename {sl:*} Serves
\join {sl.beer=s2.beer and sl.price>s2.price}
\rename F{s2:*}8Serves;

\rename_{ new_rel_name : new_attr_names } input_relation

This form of the rename operator allows you to rename both the input relation as well

TABLE SCHEMAS

drinker(name, address)
bar(name, address)
beer(name, brewer)
frequents(drinker, bar,
times_a_week)
likes(drinker, beer)
serves(bar, beer, price)

\rename_{drinker, address} drinker

as its attributes. \rename_{d1: drinker, address} drinker

More useful tips

Nested Queries

e Build a complex query by nesting: you can feed a subquery as an input relation to another
relational operator (using parentheses to enclose the subquery as necessary to avoid
ambiguity) , e.g.: \select {condition} (\project {attr_list} input_relation_1)\join

input_relation_2 ;

View

Views

RA lets you define “views,” which may be thought of as temporary, relation-valued variables
holding the results of relational algebra expressions. To define a view, use the syntax:

view_name : - view_definition_query;

RADB Language Documentation

To find more details about this language, and how to use
radb, please find this link:

https://users.cs.duke.edu/~junyang/radb/

(RADB is an in-house Duke product developed by Prof. Jun Yang!)

https://users.cs.duke.edu/~junyang/radb/

